SO(2)-Networks as Neural Oscillators

نویسندگان

  • Frank Pasemann
  • Manfred Hild
  • Keyan Zahedi
چکیده

Using discrete-time dynamics of a two neuron network with recurrent connectivity it is shown that for specific parameter configurations the output signals of neurons can be of almost sinusoidal shape. These networks live near the Sacker-Neimark bifurcation set, and are termed SO(2)-networks, because their weight matrices correspond to rotations in the plane. The discretized sinus-shaped waveform is due to the existence of quasi-periodic attractors. It is shown that the frequency of the oscillators can be controlled by only one parameter. Signals from the neurons have a phase shift of π/2 and may be useful for various kinds of applications; for instance controlling the gait of legged robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern formation in active oscillatory media and its relation to associative memory networks

We continue to study the arrays of nonlinear coupled oscillators. The networks of associative memory based on limit-cycle oscillators connected via complex-valued Hermitian matrices were previously designed. Another class of networks consisting of locally connected nonlinear oscillators, closely related to so-called cellular neural networks, is the subject of study in the present paper. In spat...

متن کامل

Forecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics

Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity c...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

On Coupled Oscillators Networks

In this study, we propose two types of coupled oscillators networks and investigate their steady states. One network has two-dimensional honeycomb structure. The other network has twedimensional lattice structure. In the Honeycomb circuit, adjacent three oscillators are coupled by one coupling resistor and it is considered that the voltages of three oscillators around a coupling resistor make t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003